a: Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)
AC=AN
Do đó: ΔABC=ΔAMN
a: Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)
AC=AN
Do đó: ΔABC=ΔAMN
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho tam giác ABC vuông tại A có AB<AC.Vẽ AH vuông góc Bc tại H trên tia đối của tia HA lấy điểm D sao cho HD=HA
a)c/m tam gíac HCD= tam giác HCA
b)qua A kẻ đường thẳng song song DC qua C kẻ đường song song với AB hai đường thẳng này cắt nhau tại E chứng minh AE=BC
cho ΔABC , M là trung điểm của AB , kẻ đường thẳng đi qua M song song với BC cắt AC tại N . Từ N kẻ đường thẳng song song với AB cắt BC tại P . Chứng minh
a)ΔBMN = ΔNPB và AM = NP
b) ΔAMN = ΔNPC và AN = NC
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Một đường thẳng đi qua A cắt các cạnh DE và BC theo thứ tự ở M và N. Chứng minh :
a) BC // DE
b) AM = AN
Bài tập1: Cho ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho MA = ME. Chứng minh rằng:
a) AB = CE.
b) AB // CE.
c) Từ C kẻ tia Cx // AB. Vẽ đường thẳng đi qua B và trung điểm I của cạnh AC cắt Cx tại D. Chứng minh : BI = DI.
giải giúp mình với mình đang cần gấp cảm ơn các bn trước nha
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG