Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC
a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG
d) Chứng minh rằng: AB = 2CG
a/ Xét \(\Delta AMB\) và \(\Delta AMC\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\)
\(AM\) cạnh chung
Do đó \(\Delta AMB=\Delta AMC\left(c.c.c\right)\)
Vì \(\Delta AMB=\Delta AMC\Rightarrow\widehat{M_1}=\widehat{M_2}\) ( góc tương ứng )
Mà \(\widehat{M_1}+\widehat{M_2}=180^0\) ( kề bù ) nên \(\widehat{M_1}=\widehat{M_2}=\dfrac{180^0}{2}=90^0\) hay \(AM\perp BC\)