Cho ΔABC tìm tập hợp các điểm M thỏa:
a/ \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MB}\right|\)
b/ \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm tập hợp điểm M sao cho: \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
1Cho tam giác ABC và điểm M thõa mãn \(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\)
TÌM VỊ TRÍ CỦA M
2 Cho tam giác ABC . Tập hợp điểm M thõa màn
a. \(\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\)
B, VÉC TƠ MA+MB-MC=MD
Cho tam giác ABC. Tìm tập hợp điểm M sao cho \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}cungphuongvoi\overrightarrow{BC}\)
cho tam giác ABC và 2 điểm M,N sao cho MA→+MB→=0, 2NA→+NC→=0. gọi I là trung điểm MN. Điểm D thỏa mãn hệ thức DB→=kDC→(k≠1).Biết ba điểm A,I,D thẳng hàng .tìm k
Cho tam giác ABC. Xác định vị trí M thoả điều kiện MA+MB-MC=0
Cho tam giác ABC và một điểm M tùy ý . Chứng minh rằng : \(\overrightarrow{4MA}+\overrightarrow{MB}-5\overrightarrow{MC}=4\overrightarrow{CA}+\overrightarrow{CB}\)
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ \(\overrightarrow{AM}\) qua 2 vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ