Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
cho tam giác nhọn ABC nôi tiếp đường tròn tâm O, các đường cao AM,BN,CP căt nhau tại H. a. cm tứ giác ANHP nội tiếp b. kẻ đường kính AD của đường tròn O. Cm góc BAM= góc CAD c. cm AD vuông góc NP d. Gọi R là bán kính đường tròn ngoại tiếp tứ giác BCNP . Cm BH.BN+CH.CP=4R^2 e. Gợi I là trung điểm B. CM AH=1OI
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh :AD vuông góc BCvà AH.AD=AE.AC
b) Chứng minh : góc EOC = góc EFD
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
cho tứ giác ABCD nội tiếp nửa đường tròn , đường kính AD. hai đường chéo AC và BD cắt nhau tại E.kẻ EF vuông góc với AD tại F. gọi M là trung điểm của DE. cm tứ giác BCMF nội tiệp
Cho tam giác ABC nhọn nội tiếp đường tròn (O). M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, vẽ MI vuông góc với AC. Chứng minh tứ giác MIHC nội tiếp.