a) Hai tam giác IAB và ICA đồng dạng với nhau do có góc I chung và \(\widehat{IAB}=\widehat{ICA}\) (Tính chất của góc tạo bởi tia tiếp tuyến và dây cung) ⇔ \(\frac{S_{IAB}}{S_{ICA}}=\frac{AB^2}{AC^2}\)
Đồng thời ta có các tỉ số: \(\frac{IB}{IA}=\frac{IA}{IC}=\frac{AB}{CA}\)
Dễ thấy \(\frac{S_{IAB}}{S_{ICA}}=\frac{IB}{IC}\)
Vậy \(\frac{IB}{IC}=\frac{AB^2}{AC^2}\)
b) Dựa vào (1), ta suy ra: \(\frac{IC-24}{IA}=\frac{IA}{IC}=\frac{20}{28}=\frac{5}{7}\)
⇒ IA = 35 cm; IC = 49 cm; IB = 21 cm.