Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Linh

Cho tam giác ABC nội tiếp đường tròn tâm O ; AB<AC . Hai đường cao BE , CF cắt nhau tại H . Tia OA cắt đường tròn tại D . Chứng minh

a, BHCD là hình bình hành

b, tứ giác BFEC nội tiếp

c, AE.AC=AF.AB

d, gọi M là trung điểm của BC . Chứng mình 3 điểm H , M , D thẳng hàng và OM=\(\dfrac{1}{2}\)AH

Hoàng Tuấn Đăng
10 tháng 5 2017 lúc 22:59

Hình: Tự vẽ.

a) Ta có: \(\widehat{HCB}=\widehat{CBD}\) ( vì cùng phụ với \(\widehat{ABC}\) )

=> HC // BD (1)

Lại có: \(\widehat{BCD}=\widehat{HBC}\) ( vì cùng phụ với \(\widehat{ACB}\) )

=> BH // CD (2)

Từ (1), (2) => BHCD là hình bình hành

b) Theo đề ra, ta có: \(\widehat{BFC}=\widehat{BEC}=90^o\) và hai góc này cùng chắn cung BC)

=> BFEC nội tiếp

c) Xét \(\Delta AEB\)\(\Delta AFC\) có:

\(\widehat{BAC}:chung\)

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta AEB\) ~ \(\Delta AFC\left(g.g\right)\)

=> \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\Leftrightarrow AE\cdot AC=AF\cdot AB\left(đpcm\right)\)

d) +) Ta có: HCBD là hình bình hành

=> HD, BC cắt nhau tại trung điểm của mỗi đường

Mà M lại là trung điểm của BC

=> H, M, D thẳng hàng.

+) Xét \(\Delta AHD\) có: \(\left\{{}\begin{matrix}AO=OD\\HM=MD\end{matrix}\right.\)

=> OM là đường trung bình của \(\Delta AHD\)

=> \(OM=\dfrac{1}{2}AH\left(đpcm\right)\)


Các câu hỏi tương tự
Đỗ’s Dũng’s
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
mạnh anhđẹpzai
Xem chi tiết
Vũ Thị Phương Thảo
Xem chi tiết
Fox Neko
Xem chi tiết
Cao Cuong
Xem chi tiết
Nguyễn Hoàng My
Xem chi tiết
Dương Vũ
Xem chi tiết