a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AK của đường tròn O.
a] Chứng minh AEHF nội tiếp
b]Chứng minh BDHF nội tiếp
c]Chứng minh BHCK là hình bình hành
d]Gọi M là trung điểm BC. Chứng minh AH=20M
Giúp mk vs
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
cho tam giác ABC cân tại A (A<90), hai đường cao BD và CE cắt nhau tại H.
a. Chứng minh bốn điểm A,D,H,E cùng thuộc đường tròn, xác định tâm Ovaf vẽ đường tròn này.
b. Gọi K là giao điểm cảu AO và BC, Chứng minh KD là tiếp tuyến của đường tròn (O)
cho tam giác ABC nhọn nội tiếp đường tròn (O). Hai đường cao AM ,BN cắt nhau tại H và cắt đường tròn (O) lần lượt tại D,E. chứng minh rằng
a. tứ giác HMCN nội tiếp đường tròn
b. CD=CE
c. tam giác BHD cân
Cho tam giác ABC có ba góc nhọn. Đường cao BD và Ck cắt nhau tại H.
a)Chứng minh tứ giác ADHK nội tiếp được trong một đường tròn
b)Chứng minh tam giác AKD và tam giác ADB đồng dạng.
c)Kẻ tiếp tuyến Dx tại của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh là M trung điểm của AH.
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED