a) Xét đường tròn (O;R) có \(\widehat{CAP}=\widehat{BAP}\) (do AP là phân giác \(\widehat{BAC}\))
=> \(\stackrel\frown{CP}=\stackrel\frown{BP}\) (hai góc nội tiếp bằng nhau chắc hai cung bằng nhau)
=> CP = BP (liên hệ giữa cung và dây)
Lại có OB = OC = R => OP là trung trực của BC hay OP ⊥ BC.
Mà AH ⊥ BC (gt) => OP // AH
b) (Chắc bài hỏi AP là phân giác góc OAH đúng không bạn)
Xét đương tròn (O;R) có OA = OP = R => ΔOAP cân tại O
=> \(\widehat{OAP}=\widehat{OPA}\)
Do OP // AH (cmt) => \(\widehat{HAP}=\widehat{OPA}\) (slt)
=> \(\widehat{OAP}=\widehat{HAP}\left(=\widehat{OPA}\right)\)
=> AP là phân giác \(\widehat{OAH}\)