góc AMC và ANC là góc nội tiếp chắn nửa đường tròn đường kính AC
=> góc AMC =90o ; góc ANC=90o
\(\Rightarrow\) tam giác AMC và ANC là 2 tam giác vuông (đpcm)
góc AMC và ANC là góc nội tiếp chắn nửa đường tròn đường kính AC
=> góc AMC =90o ; góc ANC=90o
\(\Rightarrow\) tam giác AMC và ANC là 2 tam giác vuông (đpcm)
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
cho tam giác nhọn ABC nội tiếp đường tròn (O). Hai đường phân giác trong của góc A và góc B cắt nhau ở I và thứ tự cắt đường tròn ở D và E. Đường thẳng DE cắt BC và AC lần lượt ở M và N. Chứng minh:
a) tứ giác AENI và BIMD nội tiếp
b) tứ giác CMIN là hình thoi
Giúp e vs ạ
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
Cho tam giác ABC có AB > AC, đường cao AH. Đường tròn (O) đường kính AH cắt AB ở D và cắt AC ở E.
a) C/m: Tứ giác BDEC nội tiếp.
b) ED cắt BC tại S. C/m : \(SH^2=SB.SC\)
1. cho tam giác ABC vuông tại A có đường cao AH.Gọi M,N lần lượt là các điểm đối xứng của H qua AB và AC.CMR: đường thẳng mà là tiếp xúc với đường tròn đường kính BC
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm M ( khác A)
a) cm các tam giác IMB và tam giác IMC là tam giác cân
b) Đường thẳng MO cắt đường tròn (O) tại điểm N (khác M) và cắt cạnh BC tại P. cm sinˆBAC/2=IP/IN
c) Gọi các diểm D,E làn lượt là hình chiếu của điểm I trên các cạnh AB,AC. Gọi các điểm H,K lần lượt đối xứng với D,E qua điểm I . Biết AB+AC=3BC. CM các điểm B,C,H,K cùng thuộc 1 đường tròn.