a) Vì ADHE nội tiếp \(\Rightarrow\angle AED=\angle AHD=90-\angle BHD=\angle DBH\)
\(\Rightarrow BDEC\) nội tiếp
b) Xét \(\Delta SCE\) và \(\Delta SDB:\) Ta có: \(\left\{{}\begin{matrix}\angle SCE=\angle SDB\\\angle DSBchung\end{matrix}\right.\)
\(\Rightarrow\Delta SCE\sim\Delta SDB\left(g-g\right)\Rightarrow\dfrac{SE}{SC}=\dfrac{SB}{SD}\Rightarrow SE.SD=SB.SC\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}SH\bot HO\\H\in\left(O\right)\end{matrix}\right.\Rightarrow\) SH là tiếp tuyến của (O)
Xét \(\Delta SHE\) và \(\Delta SDH:\) Ta có: \(\left\{{}\begin{matrix}\angle SHE=\angle SDH\\\angle DSHchung\end{matrix}\right.\)
\(\Rightarrow\Delta SHE\sim\Delta SDH\Rightarrow\dfrac{SH}{SE}=\dfrac{SD}{SH}\Rightarrow SE.SD=SH^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow SH^2=SB.SC\)