Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.
Cho △ABC nhọn nội tiếp (O), các đường cao AD, BF, CE cắt tại H.
a)Cm CDHE nội tiếp
b) 2 đường thẳng EF và BC cắt tại M. Cm : MB.MC = ME.MF
c) Đường thẳng qua B // AC cắt AM, AH lần lượt tại I và K. Cm: HB là tia phân giác IHK
cho tam giác abc nhọn ab<ac đường thẳng qua c vuông góc với ac cắt phân giác ngoài của góc abc tại d gọi h là chân đường cao hạ từ d từ d hạn chân đường cao lên bc tại h kẻ hk song song ac h đối xứng với n qua bd k đối xứng với l qua bd Chứng minh rằng: bhdn nằm trên 1 đường tròn
cho tam giác ABC có 3 góc nhọn ( AB < AC ) và nội tiếp đường tròn ( O ). Vẽ đường cao AH, ( H thuộc BC ) , từ H kẻ HM vuông góc với AB ( M thuộc AB ) và kẻ HN vuông góc với AC ( N thuộc AC ). Vẽ đường kính AE của đường tròn ( O ) cắt MN tại I. Tia MN cắt ( O) tại K. chứng minh rằng
a, AMHN nội tiếp
b, \(\Delta AMN\sim\Delta ACB\)
c, CEIN nội tiếp và tam giác AHK cân
Cho tam giác ABC vuông tại A, kẻ đường cao AH và phân giác BE (H thuộc BC, E thuộc AC) Kẻ AD vuông góc BE ( D thuộc BE)
a) CM ADHB nội tiếp trong 1 đường tròn. Xác định tâm O của đường tròn đó
b) CM ^EAD= ^HBDvà OD // HB
c) biết góc ABC=60 độ , và AB = a ( a>0) Tính theo a phần diện tích tam giác ABC nằm ngoài đường tròn O
Cho tam giác ABC nhọn nội tiếp (O) có AB < AC Gọi H là trực tâm của tam giác ABC. Gọi M và I lần lượt là trung điểm của BC và AH .Kẻ IM cắt phân giác AD của góc BAC tại K.
a. Chứng tỏ BD = CD
b. HK vuông góc với AD.
giúp em câu c thôi ạ plss
Cho tam giác ABC có 3 góc nhọn (AB<AC), nội tiếp (O) bán kính R. 2 đường cao BE, CF tam giác ABC cắt nhau tại H.
a, CM OA vuông góc EF.
b, Gọi K là trung điểm BC, OA cắt BC tại I, EF cắt AH tại P. CM tam giác APE đồng dạng tam giác AIB.
c, CM KH//IP.
Cho tam giác ABC vuông tại A, Kẻ đường cao AH và phân giác BE của góc
ABC (H thuộc BC, E thuộc AC), Kẻ AD vuông góc với BE (D thuộc BE).
a) Chứng minh rằng tứ giác ADHB là tứ giác nội tiếp, xác định tâm O đường tròn
ngoại tiếp tứ giác ADHB (gọi là đường tròn (O)).
b) Chứng minh góc EAD = góc HBD và OD song song với HB.
c) Cho biết số đo góc ABC=60 độ và AB = a (a > 0 cho trước). Tính theo a diện tích
phần tam giác ABC nằm ngoài đường tron (O).