cho tam giác ABC nhọn (AB<AC) nội tiếp (O) các đường cao AD,BE CF cắt nhau tại H
a) chứng minh CDHE nội tiếp
b) EF và BC cắt nhau tại M , chứng minh MB.MC=ME.MF
c) đường thẳng qua B và song song AC cắt AM,AH tại I,K. Chứng minh HB là phân giác của IHK
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF cắt nhau tại H. Vẽ tiếp tuyến của đường tròn O tại A. Đường thẳng EF cắt đường tròn O tại I Và K a) CM: các tứ giác BFHD,BFEC nội tiếp b) CM:EB là tia phân giác của góc FED c)CM: OA vuông góc IK d) gọi S là tâm đường tròn ngoại tiếp tam giác BCE,đường thẳng vuô g góc với HS tại S cắt AB tại P, cắt AC tại Q và cắt AD tại G. Chứng minh PG=GQ
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE cắt nhau tại H. Tiếp tuyến tại A của (O) cắt đường thằng BC tại M.
a) C/M tứ giác DHEC nội tiếp
b)CM 4 điểm A,B,D,E cùng thuộc 1 đg tròn
c)CM MA2=MB.MC
d) AD cắt (O) tại điểm thứ hai là I.Vẽ đường kính AK của (O).CM BK=CI
e) Kẻ IF vuông góc với AB (F thuộc AB). FD cắt AC tại .CM IN//BE
Giải hộ em câu d và e thôi ạ mấy câu kia giải hay không cũng được.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn đường O các đường cao BF và CK của tam giác cắt nhau tại H . Tia FK cắt tia CB tại M , AH cắt BC và đường tròn O lần lượt tại D và E
A/chứng minh tứ giác BKFC nội tiếp và MKMF =MBMC ( khúc này tui k hiểu đề nói j , có sai đề thì nhắc mình nha :3333)
B/ AM cắt đường tròn O tại N (N khác A) . chứng minh góc AKN = góc AFN
thank :3333333333333
Cho tam giác ABC có 3 góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K( K khác A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M.
a) Chứng minh tứ giác ACDF nội tiếp
b) AM cắt đường tròn (O) tại I( I khác A). Chứng minh MC2 = MI. MA và tam giác CMD cân.
c) MD cắt BI tại N. Chứng minh 3 điểm C, K, N thẳng hàng.
Giúp mình với ạ
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Hai đường cao AD, BE cắt nhau tại H (D∈BC, E∈AC).
a) Tứ giác ABDE nội tiếp
b) Tia AO cắt đường tròn (O) tại K (K khác A). CM tứ giác BHCK là hình bình hành.
c) Gọi F là giao điểm của tia CH với AB. Tìm giá trị nhỏ nhất của biểu thức: Q=\(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}\).
b, b) gọi I là Tđ của AO kẻ dây AE của đường tròn tâm I , đường kính AO sao cho AE//BC .Đường thẳng HE cắt MN tại K . CM IK vuông góc với BC
cho tam giác ABC nhọn nội tiếp đường tròn O . các đường cao AD , BE và CF cắt nhau tại H
A/ chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác
B/ đường thẳng EF cắt đường BC tại M và cắt đường tròn O tại K và T ( K nằm giữa M và T ) chứng minh MD.MI=MK.MT
C/ đường thẳng vuông góc với IH tại I cắt các đường thẳng AB,AC,AD lần lượt tại N,S,G . chứng minh G là trung điểm NS
thankkkkkkkkkkkkkkkkkkk
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác BDHF và BCEF nội tiếp.
b) Chứng minh FC là tia phân giác của \(\widehat{EFD}\).
c) Hai đường thẳng EF và BC cắt nhau tại M. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh tam giác HIK là tam giác cân.