a: Xet ΔADB vuông tại D va ΔAEC vuông tại E có
góc BAD chung
=>ΔADB đồg dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC và AD*AC=AE*AB
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xet ΔADB vuông tại D va ΔAEC vuông tại E có
góc BAD chung
=>ΔADB đồg dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC và AD*AC=AE*AB
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Cho tam giác ABC nhọn có AB<AC. Gọi BD, CE là đường cao, H là trực tâm của tam giác ABC, I là trung điểm của BC. a) C/m AD.AC=AB.AE và góc ADE = góc ABC b) Qua H kẻ đường thẳng vuông góc vói IH cắt cạnh AB tại M, cắt cạnh AC tại N. C/m H là trung điểm của MN
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
cho tam giác nhọn ABC trực tâm H .qua H vẽ 1 đường thẳng cắt AB tại D , cắt AC tại E sao cho HD=HE.từ H vẽ 1 đường vuông góc với DE cắt BC tại M cm M là trung điểm củaBC
giúp mik vs ạ đang cần gấp
Cho tam giác ABC nhọn. M, N lần lượt là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, cúng cát nhau tại H. Gọi G là trọng tâm của tam giác ABC
a) Tam giác AHB đồng dạng với tam giác nào? Chứng minh
b) Chúng minh: tam giác HAG đồng dạng với tam giác OMG
c) Chứng minh H, G, O thẳng hàng
cho tam giác ABC vuông tại A ( AC>AB) từ trung điểm M vẽ cạnh BC kẻ đường thẳng vuông góc BC cắt AC ở I cắt tia BA ở N .
a. chứng minh tam giác ABC đồng dạng tam giác MIC
B. giả sử AB= 5cm, AC=12 cm, tính IM?
C.gọi K là trung điểm của BN đường thẳng qua K vuông góc với BN cắt MN ở O . Chứng minh OM=1/2 NI?
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE