a, Do AE = AD ( gt ) => tam giác ADE cân tại A
mà \(\widehat{A} = 60^0\) => tam giác ADE đều
b,Ta có : AD = DC ( do D là trung điểm của AC)
mà AD = ED ( do tam giác ADE đều )
=> ED = DC
=> tam giác EDC cân tại D
a, Do AE = AD ( gt ) => tam giác ADE cân tại A
mà \(\widehat{A} = 60^0\) => tam giác ADE đều
b,Ta có : AD = DC ( do D là trung điểm của AC)
mà AD = ED ( do tam giác ADE đều )
=> ED = DC
=> tam giác EDC cân tại D
cho tam giác nhọn abc (AB < AC) có góc A = 60 độ. D là trung điểm của cạnh AC. Trên tia AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a, Tam giác ADE là tam giác đều
b, Tam giác DEC là tam giác cân
c, CE vuông góc với AB
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác ABC có ba góc đều nhọn, AB < AC. AH là đường cao Trên AH lấy điểm K sao cho H là trung điểm của AK. a) Gọi E là trung điểm của BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD. Chứng minh rằng BD = AC = CK b) Chứng minh EH là phân giác của góc AEK và DK // BC c) Gọi I là giao điểm của BD và CK, N là trung điểm của KD. Chứng minh ba điểm E, I, N thẳng hàng.
Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M.
a,Chứng minh tam giác AMB bằng tam giác AMC
b,Trên tia đối của MA lấy điểm D sao cho MD= MA. chứng minh AB // DC
c,Qua M vẽ ME vuông góc với AB( E thuộc AB) và MF vuông góc với AC( F thuộc AC) Chứng minh ME=MF
d, Chứng minh EM vuông góc với CD
Cho tam giác nhọn ABC ( AB < AC ) có góc A=60 độ.D là trung điểm cạnh AC.Trên tia AB lấy điểm E sao cho AE=AD
CMR: a) Tam giác ADE đều
b) Tam giác DEC cân
c) CE vuông AB
Cho tam giác nhọn ABC có AB>ACm đường cao AD. Trên đoạn DC lấy điểm E sao cho DB=DE. a) Chứng minh tam giác ABE cân b) Từ E kẻ EF vuông góc với AC(F thuộc AC). Từ C kẻ CK vuông góc với AE(K thuộc AE). Chứng minh ba đường thẳng AD, EF và CK đồng quy.
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Đường thẳng qua B song song với AC cắt tia DC tại điểm E.
a. Chứng minh: Tam giác ABM=Tam giác CDM
b. Chứng minh: AB=CD và AC vuông góc DE
c. Chứng minh: C là trung điểm của DE