cho tam giác abc nhọn ( AB< AC ) nội tiếp đường tròn (O) có đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh tứ giác ADHE nội tiếp và AD.AB=AE.AC
b) Gọi K là giao điển của DE và BC. Chứng minh tứ giác BCDE nội tiếp và KH bình =KB.KC c) Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCDE. Chứng minh F, H, I thẳng hàng.
a) Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)