Cho tam giác ABC nhọn (AB > AC) có góc B bằng 450 và vẽ đường cao AH. Gọi M là trung điểm cạnh AB. P là điểm đối xứng với H qua M.
a. Chứng minh AHBP là hình vuông
b. Vẽ đường cao BK của tam giác ABC. Chứng minh HP = 2MK
c. Gọi D là giao điểm AH và BK. Qua D và C vẽ các đường thẳng lần lượt song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh P, K, Q thẳng hàng.
d. Chứng minh các đường thẳng CD, AB và PQ đồng quy.
a: Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
góc AHB=90 độ
AH=HB(ΔAHB vuôg cân tại H)
Do dó: AHBP là hình vuông
b: ΔAKB vuông tại K
mà KM là trung tuyến
nên KM=AB/2=HP/2
=>HP=2KM