Ôn tập góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc hà Hồ

Cho tam giác ABC ngoại tiếp (O) có AB=c, BC=a,AC =b. Gọi D,E,F là tiếp điểm AB, BC, AC với (O). ED và EF cắt đường thẳng qua A //BC tại G, H.

1, Tính DG/DE theo a,b,c

2,Chứng minh GH,HD,EO đồng quy

3, Gọi EO cắt GH tại Q. Chứng minh tâm đường tròn nội tiếp tam giác DFQ thuộc (O)

Nguyễn Văn A
27 tháng 12 2022 lúc 15:56

1) Vì \(\left(O\right)\) nội tiếp △ABC và tiếp xúc với AB,BC,CA lần lượt tại D,E,F.

\(\Rightarrow\left\{{}\begin{matrix}BE=BD\\AD=AF\\CE=CF\end{matrix}\right.\) và \(\left\{{}\begin{matrix}OD\perp ABtạiD\\OE\perp BCtạiE\\OF\perp CAtạiF\end{matrix}\right.\)

\(BD+BE=AB-AD+BC-CE=AB+BC-AF-CF=AB+BC-CA\)

\(\Rightarrow2BD=c+a-b\)

\(\Rightarrow BD=\dfrac{c+a-b}{2}\)

\(\Rightarrow AD=AB-BD=c-\dfrac{c+a-b}{2}=\dfrac{c+b-a}{2}\)

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{\dfrac{c+b-a}{2}}{\dfrac{c+a-b}{2}}=\dfrac{c+b-a}{c+a-b}\)

Xét △BDE có: BE//AG.

\(\Rightarrow\dfrac{DG}{DE}=\dfrac{AD}{BD}=\dfrac{c+b-a}{c+a-b}\) (định lí Ta-let).

2) \(BD=BE\Rightarrow\)△BDE cân tại B.

\(\Rightarrow\widehat{BDE}=\widehat{BED}\) mà \(\left\{{}\begin{matrix}\widehat{BDE}=\widehat{ADG}\\\widehat{BED}=\widehat{AGD}\end{matrix}\right.\)

\(\Rightarrow\widehat{ADG}=\widehat{AGD}\Rightarrow\)△ADG cân tại A.

\(\Rightarrow AD=AG=AF\)

Tương tự \(AH=AF\Rightarrow AG=AH\)

\(\Rightarrow\)A là trung điểm GH.

\(\Rightarrow DA=DF=AG=\dfrac{1}{2}GH\)

△DHG có: DA là trung tuyến và \(DA=\dfrac{1}{2}GH\)

\(\Rightarrow\)△DHG vuông tại D.

\(\Rightarrow\)HD là đường cao của △GHE (1).

Tương tự: GF là đường cao của △GHE (2).

Ta có \(OE\perp BC\) mà BC//GH \(\Rightarrow OE\perp GH\)

\(\Rightarrow\)OE là đường cao của △GHE (3).

(1),(2),(3) \(\Rightarrow\)GF, HD, OE đồng quy.

3) \(EO\perp GH\) tại Q.

Gọi K là trực tâm của △GHE.

Vì △KDE, △KFE nội tiếp đường tròn đường kính KE nên:

K,D,E,F cùng thuộc 1 đường tròn.

Mà \(D,E,F\in\left(O\right)\Rightarrow K\in\left(O\right)\).

Chứng minh K là tâm đường tròn nội tiếp △DFQ \(\Rightarrow\)Sử dụng tam giác đồng dạng và tính chất 3 đg cao trong △DFQ.

Nguyễn Văn A
27 tháng 12 2022 lúc 15:58

loading...


Các câu hỏi tương tự
nguyễn huyền
Xem chi tiết
dsadasd
Xem chi tiết
Tử Ái
Xem chi tiết
Phú Nguyễn
Xem chi tiết
Thuy Lieu
Xem chi tiết
Ngọc ý
Xem chi tiết
Trần hữu tráng
Xem chi tiết
Đức huy
Xem chi tiết
Bùi bích phương
Xem chi tiết