a) Ta có: \(\dfrac{AM}{MB}=\dfrac{3}{2}\)
\(\dfrac{AN}{NC}=\dfrac{7.5}{5}=\dfrac{3}{2}\)
Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)\(\left(=\dfrac{3}{2}\right)\)
Xét ΔABC có
M∈AB(gt)
N∈AC(gt)
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
b) Xét ΔABI có
M∈AB(gt)
K∈AI(gt)
MK//BI(MN//BC, K∈MN, I∈BC)
Do đó: \(\dfrac{MK}{BI}=\dfrac{AK}{AI}\)(Hệ quả của Định lí Ta lét)(1)
Xét ΔACI có
K∈AI(gt)
N∈AC(gt)
KN//IC(MN//BC, K∈MN, I∈BC)
Do đó: \(\dfrac{KN}{IC}=\dfrac{AK}{AI}\)(Hệ quả của Định lí Ta lét)(2)
Từ (1) và (2) suy ra \(\dfrac{MK}{BI}=\dfrac{KN}{IC}\)
mà BI=IC(I là trung điểm của BC)
nên MK=KN
mà M,K,N thẳng hàng
nên K là trung điểm của MN(đpcm)