Cho tam giác đều ABC nội tiếp (O; R). M là điểm tùy ý trên đường tròn. Tìm giá trị lớn nhất của
S = MA2 + 2MB2 - 3MC2 theo R
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R, H là trực tâm của tam giác. Chứng minh:
\(OH^2=3R^2-2R^2\left(\cos2A+\cos2B+\cos2C\right)\)
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
Cho 3 điểm A (-1;1), B(3;1) C(2;4)
tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác abc
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
cho tam giác ABC có A(-3;2), B(1;2), C(-1;-1). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC