cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Cho 3 điểm A (-1;1), B(3;1) C(2;4)
tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác abc
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
cho tam giác ABC vuông tại A và AB=a , \(\widehat{BCA}\) = 30 , gọi D là trung điểm AC và lấy I sao cho ABID là hình chữ nhật
a) gọi K là điểm thuộc đoạn thẳng BC ( khác B, C ) , thỏa mãn \(\overrightarrow{BK}\) = x. \(\overrightarrow{BC}\) . tìm x sao cho 3 điểm A, K , I thẳng hàng
b) tìm tập hợp điểm M thỏa mãn 2MB2 + MC2 -MA2 = 2a2
Help me 😢😢
1, Cho tam giác ABC có độ dài cạnh AC gấp 2 lần cạnh AB góc A bằng 60°. M là trung điểm của BC, điểm N nằm trên đoạn AC sao cho 5AN = 2AC . I là giao của AM và BN .Chứng minh tam giác BMI vuông.
2, Cho hình vuông ABCD, điểm M nằm trên AC sao cho 4AM = AC .Gọi N là trung điểm của BC. Chứng minh tam giác DMN vuông cân.
3,Cho tam giác ABC có góc A nhọn ,I là trung điểm CB .Vẽ phía ngoài hai tam giác ABD và ACE vuông cân tại A. Gọi F là giao điểm của AI và DE . Chứng minh rằng tam giác AFD vuông.
1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC