Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Kẻ các đường thẳng song song với cạnh AB, AC lần lượt cắt các cạnh AC, AB tại P và Q.
a) Gọi N là điểm đối xứng của M qua Q. Gỉa sử tam giác ABC vuông tại A. Chứng minh rằng: Tứ giác AMBN là hình thoi.
c) Tam giác ABC có điều kiện giừ để tứu giác AMBN là hình vuông?
Bài toán 1: tam giác ABC. Qua trung điểm M của cạnh AB, kẻ MP song song với BC và MN song song với AC (P thuộc AC và N thuộc BC).
a) Chứng minh các tứ giác MNCP và BMPN là hình bình hành.
b) Gọi I là giao điểm của MN và BP, Q là giao điểm của MC và PN. Chứng minh rằng IQ=1/4 BC = 1/2 BN
c) Tam giác ABC có điều kiện gì thì từ giác BMPN là hình chữ nhật.
Cho tam giác ABC vuông tai A( AB<AC). Lấy M là trung điểm của BC. Từ M kẻ MN⊥AB, MP⊥AC ( N∈AB, P∈ AC)
a) Chứng minh tứ giác AMNP là hình chữ nhật.
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC.
c) Đường thẳng đi qua C và song song với AM cắt MP tại G. Chứng minh tứ giác AMCG là hình thoi.
d) Kẻ AH⊥BC, Gọi O là giao của AM và NP. Tam giác ABC cần có điều kiện gì để HO// AB
Cho tam giác ABC vuông tai A( AB<AC). Lấy M là trung điểm của BC. Từ M kẻ MN⊥AB, MP⊥AC ( N∈AB, P∈ AC)
a) Chứng minh tứ giác AMNP là hình chữ nhật.
b) Gọi E là trung điểm của MP. Chứng minh E là trung điểm của NC.
c) Đường thẳng đi qua C và song song với AM cắt MP tại G. Chứng minh tứ giác AMCG là hình thoi.
d) Kẻ AH⊥BC, Gọi O là giao của AM và NP. Tam giác ABC cần có điều kiện gì để HO// AB
Cho tam giác ABC vuông tại A có M và N lần lượt là trung điểm của các cạnh BC và AC. Gọi Dlà điểm đối xứng với M qua N.
1) Chứng minh tứ giác ADCM là hình thoi.
2) Gọi I là trung điểm của đoạn thẳng AM Chứng minh rằng B,I,D thẳng hàng.
3) Qua D kẻ đường thẳng song song với AC, cắt đường thẳng BC tại E. Đường thẳng IN cắt DE tại F. Tìm điều kiện của tam giác ABC để tứgiác MNFE là hình thang cân
cho tam giác nhọn ABC (AB<AC). gọi lần lượt là trung điểm của AB,AC và BC. Kẻ AH vuông gốc với BC tại H, AH cắt DE tại M.
1) chứng minh rằng : DM/BH.
2) chứng minh rằng : M là trung điểm AH và tam giác AEH cân
3) trên tia đối của tia DH lấy điểm K sao cho DH=DK. chứng minh rằng, tứ giá DEFH lầ hình thang cân và tứ giác KACB là hình vuông.
4) giả sử AB=AF. chứng minh rằng : ba điểm K,M,F thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi D là điểm đối xứng của A với H, đường thẳng kẻ qua D song song với AB cắt BC và CA lần lượt ở M và N. a) Tứ giác ABDM là hình gì? Vì sao b) Chứng minh M là trực tâm của tam giác ACD c) Gọi I là trung điểm của MC. Chứng minh góc HNI vuông
Cho am giác ABC cân tại A. Gọi H,D lần lượt là trung điểm của các cạnh BC và AB.
b)Gọi E là điểm đoií xứng với Hqua D. Chứng minh tứ giác AHBE là hình chữ nhật.
c)Qua D vẽ đường thẳng song song với BC cắt AH tại I. Chứng minh 3 điểm E,I,C thẳng hàng.
d)Vẽ BK vuông góc với AC tại K. Chứng minh tam giác EKH là tam giác vuông.
cho tam giác abc có các đường cao ah. m là một điểm bất kì thuộc cạnh bc( m khác b và c). qua m kẻ các đường thẩng song song với ab và ac, chúng cắt các cạnh ac và ab theo thứ tự ở e và d . b) gọi o là giao điểm của am và de. tam giác abc cần có điều kiện gì để o cags đều các điểm a,d,m,h và e