Cho tam giác (cân tại A) vẽ đường cao AH, đường cao BK
a)Tìm các cặp tam giác vuông đồng dạng ? Giải thích tại sao ?
b) Cho Hãy tính độ dài các cạnh của tam giác ABC
c) Gọi I là giao điểm của và BK, hãy tìm điều kiện của tam giác ABC để tam giác
là tam giác đều ?
Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác đó các tam giác ABD vuông cân ở B , ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BF. Chứng minh rằng:
a) AH = AK
b) AH2 = BH.CK
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D a/ chứng minh tam giác HBA đồng dangj tam giác ABC b/ Tính độ dài cạnh BC c/ tính tỉ số diện tích của hai tam giác ABD và ACD d/ Tính độ dài các đoạn thẳng BD và CD
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Cho tam giác ABC, đường trung tuyến AM, tia phân giác của góc AMB cắt AB ở D, tia phân giác của góc AMC cắt AC ở E.
a, CMR: DE//DC.
b, Gọi G là giao điểm của AM và DE. CMR: G là trung điểm của DE. Tìm điều kiện của tam giác ABC để G là trung điểm của AM
d, Gọi AN là p/g của góc BAC(N ∈BC). Bt AB=12, AC=16,BC=20. Tính diện tích ΔAMN
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là điểm đối xứng của H qua các cạnh AB, AC.
a) chứng minh BD//CE.
b. Chứng minh tam giác ABD đồng dạng với tam giác ACE.
Tam giác ABC vuông tại A, có đường cao AH. M, N lần lượt là trung điểm của AH, BH.
a) Cm: tam giác HMN đồng dạng tam giác HAB.
b) Cm: HM.HA=HN.HC
c) Cm: tam giác AHN đồng dạng tam giác CHM.
d) Gọi K là giao điểm của MN với AC, I là giao điểm của CM với AN. Cm: KM là tia phân giác góc IKH.
Bài 1. Cho tam giác vuông ABC ( Â = 90) có AB = 9cm,AC = 12cm.Tia phân giác góc A cắt BC tại D .Từ D kẻ DE vuông góc với AC (E thuộc AC) .
a) Tính độ dài các đoạn thẳng BD,CD và DE.
b) Tính diện tích các tam giác ABD và ACD.