Gọi giao điểm của ba đường trung tuyến AM, BN, CP là G (G là trọng tâm)
Theo tính chất trọng tâm. Ta có: \(BG+CG=\frac{2}{3}\left(BN+CP\right)\) (1)
Mặt khác theo BĐT tam giác: \(BG+CG>BC\) (2)
Từ (1) và (2) suy ra \(\frac{2}{3}\left(BN+CP\right)>BC\). Nhân \(\frac{3}{2}\) vào hai vế của BĐT ta được:
\(BN+CP>\frac{3}{2}BC\) (đpcm)