Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neymar JR

Cho tam giác ABC, D là trung điểm của AB. Qua D kẻ đường thẳng song song với BC cắt AC ở E. Qua E kẻ đường thẳng song song với AB cắt BC tại F.CMR:

a)AD=EF

b)Tam giác ADE bằng tam giác EFC

c)AE=EC,BF=FC

Vũ Minh Tuấn
3 tháng 12 2019 lúc 20:33

a) Vì \(AB\) // \(EF\left(gt\right)\)

=> \(\widehat{BDF}=\widehat{EFD}\) (vì 2 góc so le trong).

\(DE\) // \(BC\left(gt\right)\)

=> \(\widehat{EDF}=\widehat{BFD}\) (vì 2 góc so le trong).

Xét 2 \(\Delta\) \(BDF\)\(EFD\) có:

\(\widehat{BDF}=\widehat{EFD}\left(cmt\right)\)

Cạnh DF chung

\(\widehat{BFD}=\widehat{EDF}\left(cmt\right)\)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

=> \(BD=EF\) (2 cạnh tương ứng).

\(AD=BD\) (vì D là trung điểm của \(AB\))

=> \(AD=EF.\)

b) Vì \(DE\) // \(BC\left(gt\right)\)

=> \(\widehat{ADE}=\widehat{DBF}\) (vì 2 góc so le trong) (1).

\(AB\) // \(EF\left(gt\right)\)

=> \(\widehat{DBF}=\widehat{EFC}\) (vì 2 góc so le trong) (2).

Từ (1) và (2) => \(\widehat{ADE}=\widehat{EFC}.\)

Xét 2 \(\Delta\) \(ADE\)\(EFC\) có:

\(AD=EF\left(cmt\right)\)

\(\widehat{ADE}=\widehat{EFC}\left(cmt\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (2 góc đồng vị do \(EF\) // \(AD\))

=> \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)

c) Theo câu b) ta có \(\Delta ADE=\Delta EFC.\)

=> \(AE=EC\) (2 cạnh tương ứng).

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
hai anh le
Xem chi tiết
Siêu sao bóng đá
Xem chi tiết
hà ngô
Xem chi tiết
Hieu Tran
Xem chi tiết
Sonata Dusk
Xem chi tiết
Như Quỳnh
Xem chi tiết
Tui tên ...
Xem chi tiết
ABC
Xem chi tiết
phương hoàng
Xem chi tiết