\(\overrightarrow{GE}=\dfrac{1}{3}\overrightarrow{AG}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{GE}=\dfrac{1}{3}\overrightarrow{AG}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi vecto EA = vecto 2EB, veto 3FA+ veto 2FC= vecto 0. Chứng minh 3 điểm E,F,G thẳng hàng. Giúp em với ạ
Cho tam giác ABC có trung tuyến BM và trọng tâm G . Phân tích vecto BG theo hai vecto BA và vecto BC
CHo tam giác ABC, M là trung điểm của AC, N thuộc BC; 3 vecto BN=2 vecto NC. phân tích các vecto BM, AN,MN theo vecto AB,AC
Cho tam giác ABC có N thuộc cạnh BC sao cho BN = 2NC . Phân tích vecto AN theo hai vecto AB và vecto AC
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
GIÚP MÌNH VỚI Ạ
Cho tam giác ABC.Gọi M là trung điểm của AB,M thuộc BC sao cho vecto BM bằng 2 lần vecto BC.Phân tích vecto BM theo vecto AB và AC
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng