a.
Xét \(\Delta AMN;\Delta CPN\) có :
\(AN=NC\left(gt\right)\\ \widehat{ANM}=\widehat{CNP}\left(đ^2\right)\\ NM=NP\left(gt\right)\\ \Rightarrow\Delta AMN=\Delta CPN\left(c-g-c\right)\)
b.
\(\Delta AMN=\Delta CPN\left(cmt\right)\\ \Rightarrow AM=CP\\ \Rightarrow BM=CP\)
c.
Xét \(\Delta BMC;\Delta PCM\) có :
\(BM=CP\left(cmt\right)\\ \widehat{BMC}=\widehat{PCM}\left(cmt\right)\\ MC\left(chung\right)\\ \Rightarrow\Delta BMC=\Delta PCM\left(c-g-c\right)\\ \Rightarrow\widehat{PMC}=\widehat{BCM}\)
=> MN // BC
d)
\(\Delta BCM=\Delta PMC\left(cmt\right)\\ \Rightarrow MP=BC\\ \Rightarrow MN=\dfrac{1}{2}BC\)