Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho tam giác ABC , trên tia đối của tia AB lấy điểm D , trên tia đối của tia AC lấy điểm E sao cho AC = AE, AB=AD

a, Chứng minh tam giác ABC = tam giác ADE

b , Chứng minh DE song song với BC

c, Gọi M là trung điểm của EB , N là trung điểm của BC

CM : M;A;N thẳng hàng

chỉ cần làm phần c thôi

Vũ Minh Tuấn
20 tháng 11 2019 lúc 11:32

c) Sửa lại \(N\) là trung điểm của \(DC\) nhé.

Xét 2 \(\Delta\) \(ABE\)\(ADC\) có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAE}=\widehat{DAC}\) (vì 2 góc đối đỉnh)

\(AE=AC\left(gt\right)\)

=> \(\Delta ABE=\Delta ADC\left(c-g-c\right)\)

=> \(BE=CD\) (2 cạnh tương ứng).

\(M\) là trung điểm của \(EB\left(gt\right)\)

=> \(EM=BM=\frac{1}{2}EB\) (tính chất trung điểm) (1).

\(N\) là trung điểm của \(CD\left(gt\right)\)

=> \(DN=CN=\frac{1}{2}CD\) (tính chất trung điểm) (2).

\(EB=CD\left(cmt\right)\) (3).

Từ (1) ; (2) và (3) => \(EM=BM=DN=CN.\)

\(\Delta ABE=\Delta ADC\left(cmt\right)\)

=> \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).

Hay \(\widehat{ABM}=\widehat{ADN}.\)

Xét 2 \(\Delta\) \(ABM\)\(ADN\) có:

\(BM=DN\left(cmt\right)\)

\(\widehat{ABM}=\widehat{ADN}\left(cmt\right)\)

\(AB=AD\left(gt\right)\)

=> \(\Delta ABM=\Delta ADN\left(c-g-c\right)\)

=> \(AM=AN\) (2 cạnh tương ứng).

=> \(A\) là trung điểm của \(MN\).

=> \(M;A;N\) thẳng hàng (đpcm).

Chúc bạn học tốt!

Khách vãng lai đã xóa
Diệu Huyền
20 tháng 11 2019 lúc 11:40

Violympic toán 7

Khách vãng lai đã xóa

Các câu hỏi tương tự
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
Nguyễn đức đạt
Xem chi tiết
06 Huynh Pham Nguyen Bao...
Xem chi tiết
Minh Phạm
Xem chi tiết
Trần Ngọc Danh
Xem chi tiết
ARMY BTS
Xem chi tiết
Minz Ank
Xem chi tiết