Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho tam giác ABC , trên tia đối của tia AB lấy điểm D , trên tia đối của tia AC lấy điểm E sao cho AC = AE, AB=AD

a, Chứng minh tam giác ABC = tam giác ADE

b , Chứng minh DE song song với BC

c, Gọi M là trung điểm của EB , N là trung điểm của BC

CM : M;A;N thẳng hàng

Trúc Giang
18 tháng 11 2019 lúc 17:53

a/ Xét ΔABC và ΔADE ta có:

AE = AC (GT)

\(\widehat{EAD}=\widehat{BAC}\) (đối đỉnh)

AD = AB (GT)

=> ΔABC = ΔADE (c - g - c)

b/ Có ΔABC = ΔADE (câu a)

=> \(\widehat{E}=\widehat{C}\) (2 góc tương ứng)

\(\widehat{E}\)\(\widehat{C}\) lại là 2 góc so le trong

=> ED // BC

Khách vãng lai đã xóa
Vũ Minh Tuấn
18 tháng 11 2019 lúc 18:24

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABC\)\(ADE\) có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)

\(AC=AE\left(gt\right)\)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)

=> \(\widehat{ACB}=\widehat{AED}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(DE\) // \(BC.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
Nguyễn đức đạt
Xem chi tiết
06 Huynh Pham Nguyen Bao...
Xem chi tiết
Trần Ngọc Danh
Xem chi tiết
ARMY BTS
Xem chi tiết
Minh Phạm
Xem chi tiết
Minz Ank
Xem chi tiết