Lời giải:
Áp dụng định lý Menelaus cho tam giác $AMC$ có $B,D,E$ thẳng hàng:
$\frac{BM}{BC}.\frac{DA}{DM}.\frac{EC}{EA}=1$
$\Leftrightarrow \frac{1}{2}.1.\frac{EC}{EA}=1$
$\Leftrightarrow EC=2EA$ hay $EA=\frac{1}{2}EC$ (đpcm)
Lời giải:
Áp dụng định lý Menelaus cho tam giác $AMC$ có $B,D,E$ thẳng hàng:
$\frac{BM}{BC}.\frac{DA}{DM}.\frac{EC}{EA}=1$
$\Leftrightarrow \frac{1}{2}.1.\frac{EC}{EA}=1$
$\Leftrightarrow EC=2EA$ hay $EA=\frac{1}{2}EC$ (đpcm)
Bài 4.Cho tam giác ABC, đường trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD và AC. Chứng minh AE = 1/2 EC
Cho tam giác ABC, đường trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD và AC.
Chứng minh rằng :
\(AE=\dfrac{1}{2}EC\)
cho tam giác ABC có AM là đường trung tuyến . Gọi D là trung điểm của AM . BD cắt AC tại E . Kẻ MK //BE ( K thuộc EC) chứng minh rằng 1, K là trung điểm của CE 2, CE =2AE
Cho tam giác ABC trung tuyến AM (M thuộc BC) có I là trung điểm của AM. Tia BI cắt AC tại D. Gọi E là trung điểm của DC.
a) Chứng minh ME = \(\dfrac{1}{2}\) BD
b) Chứng minh D là trung điểm của AE.
c) Chứng minh BD = 4ID.
Cho tam giác ABC , đường trung tuyến AM. Gọi D là trung điểm của AM ,E là giao điểm của BD và AC . C/m rằng AE=1/2AC
Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD, AC. CM: EC = 2AE
Cho tam giác ABC, trung tuyến AM, trên cạnh ac lấy điểm D, E sao cho AD = BE=EC . Gọi I là giao điểm của AM và DB. Chứng minh IA = IM
Cho tam giác ABC . Gọi AM là trung tuyến , D là trung điểm của AM . Gọi E là giao của BD và AC , F là trung điểm của cạnh EC
a) CM : EA = 1/2 EC
b) CM : DE = 1/4 BF
1 cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK
2 Cho tam giác ABC, đường trung tuyến AM, E là giao điểm BD và AC. CMR: AE = \(\dfrac{1}{2}\) EC