a: Xét tứ giác AMBC có
E là trung điểm chung của AB và MC
=>AMBC là hình bình hành
=>AM//BC
b: Xét tứ giác ANCB có
E là tđiểm chung của AC và NB
=>ANCB là hình bình hành
=>AN//BC
a: Xét tứ giác AMBC có
E là trung điểm chung của AB và MC
=>AMBC là hình bình hành
=>AM//BC
b: Xét tứ giác ANCB có
E là tđiểm chung của AC và NB
=>ANCB là hình bình hành
=>AN//BC
Cho tam giác ABC,D là trung điểm của AC, E là trung điểm của AB.Trên tia đối của tia DB lấy điểm N sao cho DN = DB. Trên tia đối của tia EC, lấy điểm M sao cho EM = EC.Chứng minh rằng A là trung điểm của MN.
Cho tam giác ABC. Gọi điểm D là trung điểm của AC. Trên tia đối của tia DB lấy điểm M sao cho DM = DB. Trên tia đối của tia EC lấy điểm N sao cho EN=EC. Chứng minh rằng A là trung điểm của MN
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf
Bài 4: Cho ABC nhọn có AB = AC. Gọi M là trung điểm của AB.
a) Chứng minh ΔAMB = ΔAMC từ đó suy ra AM ⊥ BC
b) Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm N sao cho IN = IB. Chứng minh ΔIBC = ΔINA và AN // BC.
c) Gọi H là trung điểm của AN. Chứng minh H, I, M thẳng hàng
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM