a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có
\(\widehat{DBA}\) chung
Do đó: ΔBDA~ΔBFC
=>\(\dfrac{BD}{BF}=\dfrac{BA}{BC}\)
=>\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)
Xét ΔBDF và ΔBAC có
\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)
\(\widehat{DBF}\) chung
Do đó: ΔBDF~ΔBAC
Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA~ΔCEB
=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
Xét ΔCDE và ΔCAB có
\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
b: \(BF\cdot BA+CE\cdot CA\)
\(=BD\cdot BC+CD\cdot CB\)
\(=BC\left(BD+CD\right)=BC^2\)