Cho hình tam giác ABC có ba góc nhọn (AB<AC). Kẻ đường cao BE và đường cao CF cắt nhau ở H. Gọi K là giao điểm của AH và BC.
a, CM tam giác ABK đông dạng với tam giác ABF, từ đó suy ra BA.BF=BK.BC
b, CM tam giác BKF đồng dạng tam giác BAC
c, Gọi O và I lần lượt là trung điểm của BC và AH. Tia EF cắt AK và BC lần lượt tại N và D. CM: ON vuông góc DI
a: Xét ΔBKA vuông tại K và ΔBFC vuông tại F có
\(\widehat{FBC}\) chung
Do đó: ΔBKA\(\sim\)ΔBFC
Suy ra: BK/BF=BA/BC
hay \(BK\cdot BC=BF\cdot BA\)
b: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
\(\widehat{KBF}\) chung
Do đó: ΔBKF\(\sim\)ΔBAC