a) Xét ΔBMN và ΔCMA có
\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)
\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)
Do đó: ΔBMN∼ΔCMA(g-g)
b) Ta có: ΔBMN∼ΔCMA(cmt)
nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)
Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)