a: góc ADH+góc AKH=180 độ
=>ADHK nội tiếp
b: góc BKC=góc BDC=90 độ
=>BKDC nội tiếp
=>góc AKD=góc ACB
Xét ΔAKD và ΔACB có
góc AKD=góc ACB
góc A chung
=>ΔAKD đồng dạng với ΔACB
a: góc ADH+góc AKH=180 độ
=>ADHK nội tiếp
b: góc BKC=góc BDC=90 độ
=>BKDC nội tiếp
=>góc AKD=góc ACB
Xét ΔAKD và ΔACB có
góc AKD=góc ACB
góc A chung
=>ΔAKD đồng dạng với ΔACB
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AK của đường tròn O.
a] Chứng minh AEHF nội tiếp
b]Chứng minh BDHF nội tiếp
c]Chứng minh BHCK là hình bình hành
d]Gọi M là trung điểm BC. Chứng minh AH=20M
Giúp mk vs
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, có hai đường cao BB' và CC' cắt nhau tại H a)Chứng minh tứ giác BCB'C' nội tiếp? b)Gọi H' là đối xứng của H qua BC. Chứng minh H thuộc đường tròn tâm O? c)Tia AO cắt đường tròn tâm O tại D và cắt B'C' tại I. Chứng minh AD vông góc với C'B'
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK