Cho tam giác ABC vuông tại A có AB<AC. Gọi M Là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E
a) Cm AM=DE
b) Cm tứ giác DMCE là hbh
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Cm tứ giác DHME là hình thang cân và DE là trung trực của AH
cho tam giác ABC vuông tại a có ad là đường phân giác của góc A. gọi M,N lần lượt là chân các đường vuông góc kẻ từ D xuống cạnh AB,AC.
a)biết AB=30cm,AC=40cm,BC=50cm.tính độ dài đoạn thẳng BD và CD.
b)tứ giác AMDN là hình gì?vì sao
c)tính diện tích tứ giác AMDN.
Cho tam giác vuông ABC vuông tại A ( AB<AC) có đường cao AH , trung tuyến AM.Gọi E,F lần lượt là trung điểm của AB và AC
a) CMR: tứ giác HEMF là hình thang cân
b) Kẻ Ax // BC cắt tia MF tại K . CMR: tứ giác AMCK là hình thoi
c) CMR: HE vuông góc với HF
d) Chứng minh SABC = 18cm2.Tính SAMCK?
Cho tam giác ABC có các đường cao BK và CI cắt nhau tại H. Đường thẳng kẻ từ B vuông góc với AB và từ C vuông góc với AC cắt nhau tại D
a, C/m tứ giác BHCD là hình bình hành
b, Tam giác ABC thỏa mãn điều kiện gì để đường thẳng DH đi qua A. Khi đó tứ giác BICD là hình chữ nhật
c, Gọi A' là điểm đối xứng với A qua trung điểm M của BC . C/m góc DCA'= góc ACI
Cho tam giác ABC nhọn có trục tâm H. Các đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, D thẳng hàng.
c) Chứng minh 4 điểm A, B, D, C cách đều một điểm.
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi.
cho tam giác ABC vuông tại A (AB>AC) đường cao AH , trung tuyến AM. Gọi N và E lần lượt là trung điểm của AC,AB
a, tứ giác MENH là hình gì? vì sao
b, CM: HE vuông góc HN
c, Từ A kẻ đường thẳng song song với BC cắt ME và MN lần lượt ở K và F . Tứ giác AMBK là hình gì? vì sao
d, Tam giác ABC cần đk gì thì tứ giắc AFCM là hình vuông
Cho hình vuông ABCD. Gọi M,N,P lần lượt là trung điểm của AD, BC,DC. Đường thẳng AP và đường thẳng DN cắt nhau tại K
a) CM: tứ giác BMDN là hình bình hành
b) CM: AP vuông góc với DN
c) CM: tứ giác BMKN là hình thang cân
d) Cho AB=√5. Tính diện tích tam giác MDK
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .