a) Ta có: AB = 5 cm, AC = 12 cm, BC = 13 cm (gt)
Suy ra: AB2 = 25 cm, AC2= 144 cm, BC2 = 169 cm
=> AB2 + AC2 = 25 + 144 = 169 = BC2
=> Tam giác ABC là tam giác vuông ( Định lí Pitago đảo )
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{BAE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
Suy ra: DA=DE(hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)