tamgiác abc cân tại a m là trung điểm bc trên tia đối của tia ma bất kỳ lấy điểm d từ d kẻ vuông góc ab và ac ll tại e và f cm tgiac aecf là hvg b) cm ef//bc c) qua e kẻ đường vuông góc vs mf tại n cm and bằng 90 d)cm b,n,d thẳng hàng
hộ mình câu d với mng ơi kẻ hình và giải chi tiết nhé mình làm rất nhiều cách rồi nhưng toàn bị ngộ nhận thôi <3
Cho tam giác ABC cân tại A điển O nằm trong tam giác đó trên cạnh AB lấy điểm D . trên cạnh BC lấy điểm E sao cho OD song song BC . OE song song AC .Chứng Minh rằng tứ giác DOEB là hình thang cân
Bài 2 Cho ∆ABC cân tạiA.Gọi M là trung điểm BC. Từ điểm D thuộc BC (BD >
CD) vẽ đường vuông góc với BC cắt AC và tia BA lần lượt tại E và F.
a) Chứng minh tứ giác AMDF là hình thang vuông.
b) Gọi O là trung điểm EC, N là điểm đốixứngvới D qua O. Chứng minh tứ
giác DENC là hình chữ nhật.
c) Lấy I thuộc AB sao cho A là trung điểm IF.Chứng minh I, E, N thẳng hàng.
d) Gọi K là điểm đối xứng với N qua A.Chứng minh tứ giác BDFK là hình
chữ nhật.
. Cho tam giác ABC vuông tại A. Gọi M, N lần lượt là trung điểm của AC và BC.
a) Chứng minh rằng tứ giác AMNB là hình thang vuông
b) Gọi I là giao điểm của BM và AN. Trên tia đối của tia NA lấy điểm E sao cho NE = NI. Trên tia đối
của tia MB lấy điểm F sao cho MF = MI. Chứng minh rằng EF // AB
c) Gọi H là trung điểm của AB, K là trung điểm của EF. Chứng minh rằng bốn điểm C, K, I, H thẳng
hàng
Cho tam giác ABC. Gọi M là trung điểm AB. Trên tia đối của tia BC lấy điểm O sao cho: BO=1/2BC. Đường OM cắt OC tại N. Chứng minh: AN=1/4AC
cho tam giác ABC;M,N lần lượt là trung điểm của AB và BC .Trên tia đối của tia MN lấy điểm P sao cho MN=NP a,Tứ giác APBN là hình gì ? vì sao? b, Chứng minh AC=NP
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC hai tam giác vuông cân ABD và tam giác vuông cân ACE tại E và D. Gọi M là trung điểm của BC. Chứng minh rằng tam giác DME vuông cân tại M.
Cho tam giác ABC cân tại A, đường trung tuyến AM, kẻ MI vuông góc với AB, MK vuông góc với AC.
a) Chứng minh: Tam giác AIM = Tam giác AKM
b) Chứng minh: góc IMB = góc KMC
c) Chứng minh tứ giác BIKC là hình thang
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là các trung điểm BG và CG. a) Chứng minh MNPQ là hình bình hành. b) Từ M kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh A, G, I thẳng hàng. c) Cho AI = 9cm, BC = 10cm. Tính chu vi tứ giác MNPQ.