a: Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔACD can tại C
b: Xét ΔEAD có
EH là đườg cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔACE và ΔDCE có
CA=CD
CE chung
EA=ED
Do đo:ΔACE=ΔDCE
a: Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔACD can tại C
b: Xét ΔEAD có
EH là đườg cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔACE và ΔDCE có
CA=CD
CE chung
EA=ED
Do đo:ΔACE=ΔDCE
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC và trên tia đối HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB và trên tia đối của tia NH lấy điểm D sao cho NH=ND
a) Chứng minh 3 điểm D, A, E thẳng hàng
b) Chứng minh MN//DE
c) Chưng minh BD//CE
d) Chưng minh tam giác DHE là tam giác đều
P/s Giải nhanh giùm vs đg gấp
Bài 4 : Cho tam giác ABC cân ( AB = AC ) ; Trên tia đối của tia BC lấy điểm D , trên tí đối của tia CB lấy điểm E sao cho BD = CE
a. Chứng minh : AD = AE
b. Lấy M là trung điểm của BC ; Chứng minh AM là tia phân giác góc DAE
Cho tam giác ABC cân tại A, AH vuông góc với BC. Trên tia đối tia HA lấy D sao cho HD = HA. Trên tia đối tia CB lấy E sao cho CE = CB.
a) Chứng minh C là trọng tâm của tam giác ADE.
b) Tia AC cắt DE tại M. Chứng minh AE // HM.
Cho tam giác ABC; góc A=90 độ(AB > AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc BC tại H trên tia đối HA lấy E sao cho HE = HA. Chứng minh rằng:
a) CD vuông góc với AC
b) BD = CE
c) BD = CE
d) Cho góc MAE = góc MEA và góc MDE = góc MED. Chứng minh AE vuông góc ED
Cho tam giác ABC với B=C . Kẻ AH vuông góc BC (h thuộc BC )
a) Chứng minh rằng :AB =AC
b) Trên tia đối của BC lấy điểm M , trên tia đối của BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho CN=BM . Chứng minh rằng M=N
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng