Cho tam giác ABC, biết rằng tồn tại các điểm M,N lần lượt trên các cạnh AB, BC sao cho: 2\(\frac{BM}{AM}\) = \(\frac{BN}{CN}\) và góc BNM = góc ANC . CM: tam giác ABC vuông
Cho tam giác ABC, M là điểm trên cạnh BC sao cho MB=2MC, N là điểm trên cạnh AC sao cho NA=2NC, G là giao điểm của AM và BN. Chứng minh:
a) MN//AB.
b) \(\dfrac{GA}{GM}=\dfrac{GB}{GN}=3\)
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.
Đường thẳng d đi qua trọng tâm G của tam giác ABC lần lượt cắt các cạnh AB, AC và tia CB tại M, N và P. Chứng minh:
\(\dfrac{AB^2}{AM.BM}+\dfrac{AC^2}{AN.CN}-\dfrac{BC^2}{BP.CP}=9\)
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số AN/AB và AM/AC. Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN. Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB
Cho tam giác ABC vuông tại B ( BA < BC ). Trên cạnh BC lấy điểm M sao cho BA= BM. Từ M kẻ MD vuông góc với AC tại D. MD cắt đường AB tại N. AM cắt NC tại E
1. Chứng minh đồng dạng từ đó suy ra CD.CA = CM.CB
2. Chứng minh đồng dạng
3. Chứng minh vuông cân
4. Chứng minh suy ra BM là phân giác của
1.cho tam giác ABC cân tại A. M là trung điểm của BC. D,E lần lượt thuộc các cạnh AB,ACsao cho góc DEM= góc B. CMR :a) DM là tia phân giác góc BDE. b)BDxCE=BC^ : 4