Cho hình thang ABCD (AB//CD), đường thẳng d//AB cắt AD, BD, AC, BC lần lượt tại M, N, P, G. Chứng minh:
MN=PQ
\(\dfrac{AE}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{AF}{AC}=\dfrac{BD}{BC}\)
Cho G là trọng tâm của tam giác ABC. Qua G vẽ đường thẳng song song với AB cắt BC tại D. Chứng minh rằng BD=\(\dfrac{1}{3}\)BC.
2. Cho tgiac ABC, G là trọng tâm. một đường thẳng qua G cắt cạnh AB, AC theo thứ tự ở C', B' và cắt tia đối của CB ở A'. tính \(\dfrac{AB}{AC'}\) + \(\dfrac{AC}{AB}\)
Cho tam giác ABC nhọn (AB<AC). Các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K
a) Chứng minh tam giác ABC đồng dạng với tam giác EFC
b) Gọi G là giao điểm của CH và AB. Chứng minh \(\dfrac{AH}{HE}+\dfrac{BH}{HF}+\dfrac{CH}{HG}>6\)
c) Chứng minh \(BH.BF+AH.AE=AB^2\)
Cho hình bình hành ABCD. Trên đường chéo AC lấy I. Tia DI cắt đường thẳng AB tại M, cắt đường thẳng BC tại N
a) Chứng minh rằng : \(\dfrac{AM}{AB}=\dfrac{DM}{DN}=\dfrac{CB}{CN}\)
b) Chứng minh rằng ID2 = IM.IN
Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC=75cm.
Cho tam giác ABC, biết rằng tồn tại các điểm M và N lần lượt trên các cạnh AB và BC sao cho \(\dfrac{2BM}{AM}=\dfrac{BN}{CN}\) và góc BNM = góc ANC. Chứng minh tam giác ABC vuông cân
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho \(\dfrac{BM}{MC}=\dfrac{1}{2}\) . Qua M kẻ đường thẳng song song với AC cắt AB ở D. Qua M kẻ đường thẳng song song với AB cắt AC tại E. Tìm các cặp tam giác đồng dạng.
Cho tam giác ABC vuông tại A ( AC>AB), đường cao AH \(\left(H\in BC\right)\).Trên tia HC lấy điểm D sao cho HD=HA . Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của đoạn thẳng BE.
a, Chứng minh rằng \(BE=\sqrt{2}AB\) và \(\Delta BHM\approx\Delta BEC\)
b, Tia AM cắt BC tại G . Chứng minh :\(\dfrac{GB}{BC}=\dfrac{HD}{AH+HC}\)