Hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O và song song với đáy AB cắt các cạnh bên AD,BC theo thứ tự M và N
a. Chứng minh rằng OM=ON
b. Chứng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
Cho hình thang ABCD (AB//CD), đường thẳng d//AB cắt AD, BD, AC, BC lần lượt tại M, N, P, G. Chứng minh:
MN=PQ
\(\dfrac{AE}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{AF}{AC}=\dfrac{BD}{BC}\)
Cho ΔA'B'C' và ΔABC có\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)
Trên AB lấy M sao cho AM=A'B', đường thẳng đi qua M song song với BC cắt AC tại N. Chứng minh rằng:
a) ΔAMN=ΔA'B'C'
b) ΔA'B'C' đồng dạng với ΔABC
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
Đường thẳng d đi qua trọng tâm G của tam giác ABC lần lượt cắt các cạnh AB, AC và tia CB tại M, N và P. Chứng minh:
\(\dfrac{AB^2}{AM.BM}+\dfrac{AC^2}{AN.CN}-\dfrac{BC^2}{BP.CP}=9\)
Cho tam giác ABC vuông tại A ( AC>AB), đường cao AH \(\left(H\in BC\right)\).Trên tia HC lấy điểm D sao cho HD=HA . Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của đoạn thẳng BE.
a, Chứng minh rằng \(BE=\sqrt{2}AB\) và \(\Delta BHM\approx\Delta BEC\)
b, Tia AM cắt BC tại G . Chứng minh :\(\dfrac{GB}{BC}=\dfrac{HD}{AH+HC}\)
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh:
a) ΔNBC ~ ΔBCM
b) BM ⊥ CN
Cho hình bình hành ABCD. Một cát tuyến qua D, cắt đường chéo AC ở I và cắt cạnh BC ở N,cắt đường thẳng AB ở M
a) Chứng minh rằng tích AM. CN không phụ thuộc vào vị trí của cát tuyến qua D
b) Chứng minh hệ thức \(ID^2=IM.IN\)
cho tam giác ABC vuông tại A (AC>AB), đường cao AH ( H thuộc BC) trên tia HC lấy điểm D sao cho HD = HA từ D vẽ đường vuông góc với AC cắt AC tại E
1 chứng minh rằng tam gics BEC đồng dạng với tam giác ADC tính độ dài đoạn BE theo m=AB
2 gọi M là trung điểm của đoạn BE chứng minh rằng hai tam giác BHM và BEC đồng dạng tính số đo của góc AHM
3 tia AM cắt BC tại G chứng minh \(\dfrac{GB}{GC}=\dfrac{ED}{DC}\)