Đường thẳng d đi qua trọng tâm G của tam giác ABC lần lượt cắt các cạnh AB, AC và tia CB tại M, N và P. Chứng minh:
\(\dfrac{AB^2}{AM.BM}+\dfrac{AC^2}{AN.CN}-\dfrac{BC^2}{BP.CP}=9\)
Cho tam giác ABC, qua trọng tâm G kẻ đường thẳng d cắt các cạnh AB,
AC theo thứ tự ở E và F. Chứng minh BE/AE + CF/AF = 1
Cho \(\Delta ABC\), trung tuyến AM. G là trọng tâm. Một đường thẳng đi qua G cắt AB, AC, BC thứ tự tại I, K, H. Kẻ BE // CF // IK (E, F ϵ AM)
Chứng minh AE + AF = 2AM
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho \(\dfrac{BM}{MC}=\dfrac{1}{2}\) . Qua M kẻ đường thẳng song song với AC cắt AB ở D. Qua M kẻ đường thẳng song song với AB cắt AC tại E. Tìm các cặp tam giác đồng dạng.
Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC=75cm.
Cho tam giác ABC (AB < AC). Đường thẳng kẻ qua trọng tâm G của tam giác cắt AB, AC lần lượt ở D và E. Chứng minh AB/AD + AC/AE = 3
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG
Cho hình thang ABCD (AB//CD), đường thẳng d//AB cắt AD, BD, AC, BC lần lượt tại M, N, P, G. Chứng minh:
MN=PQ
\(\dfrac{AE}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{AF}{AC}=\dfrac{BD}{BC}\)
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho\(\dfrac{BM}{MC}=\dfrac{1}{2}\) . Qua M kẻ đường thẳng song song với AC cắt AB ở D. Qua M kẻ đường thẳng song song với AB cắt AC tại E. Tính chu vi các tam giác DBM, EMC biết chu vi tam giác ABC bằng 24cm.