Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc

Cho tam giác ABC, M là điểm trên cạnh BC sao cho MB=2MC, N là điểm trên cạnh AC sao cho NA=2NC, G là giao điểm của AM và BN. Chứng minh:

   a) MN//AB.

   b) \(\dfrac{GA}{GM}=\dfrac{GB}{GN}=3\)

Nguyễn Lê Phước Thịnh
20 tháng 1 2021 lúc 22:54

a) Ta có: BM=2MC(gt)

nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)

Ta có: NA=2NC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)

Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)

Xét ΔCAB có 

N∈AC(gt)

M∈BC(gt)

\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)

Do đó: MN//AB(Định lí Ta lét đảo)