Cho tam giác ABC, BC cm = 8 , qua A kẻ đường thẳng d song song với BC, trên d lấy điểm D sao
cho AD cm = 4 (D và C cùng nửa mặt phẳng bờ là đường thẳng AB). Gọi E là giao điểm của đoạn
BD với đoạn AC; M là trung điểm của BC.
1) (1đ) Chứng minh tứ giác ABMD là hình bình hành.
2) (1,5đ) Chứng minh tam giác AED~ tam giác CEB và tính tỉ số đồng dạng, tỉ số chu vi của hai tam giác.
1/
Theo đề có AD//BC hay AD//BM
mà M là trung điểm BC
=>BM=4cm
Xét tứ giác ABMD có:
AD//BM và AD=BM (cmt)
vậy ABMD là hình bình hành.
b/ Áp dụng đ/l ta-lét có :
\(\dfrac{AD}{BC}=\dfrac{DE}{EB}=\dfrac{AE}{EC}=\dfrac{1}{2}\)
vậy ΔAED ∼ Δ CEB
<=> vì các cạnh của Δ AED đều = \(\dfrac{1}{2}\) cạnh của Δ CEB suy ra:
\(\dfrac{P_{AED}}{P_{CEB}}=\dfrac{1}{2}\)