Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
Bài 3: Cho tam giác ABC , M thuộc AB , N thuộc AC . Biết AM = 3cm, BM = 2cm; AN = 7,5cm ;NC = 5cm. a/ Chứng minh rằng : MN//BC b/ Gọi E là trung điểm của BC ;AE cắt MN tại F . Chứng minh FM = FN. c*/ Gọi O là giao điểm của BN và CM . Chứng minh ba điểm A ,O,E thẳng hàng.
Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:
a, EF song song với AB
b, Tính EF
1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.
2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Chứng minh đường thẳng EF đi qua trung điểm của AB và DC.
Chỉ cần ý b thôi nha
Cho tam giác ABC có AB < AC; Gọi D là trung điểm BC. Gọi G là trọng tâm tam giác ABC. Qua G kẻ d cắt 2 cạnh AB; AC lần lượt tại E và F. Vẽ BM//d, CN//d (M, N ∈ AD).
Chứng minh:
a) BE.AG = AE.MG
b) GM + GN = 2GD
Cho hình chữ nhật ABCD, trên đường chéo BD lấy điểm P, gọi M là điểm đối xứng của C qua P.a) AMDB là hình gì? vì sao?b) E, F lần lượt là hình chiếu của M trên AD, AB. Cm: EF//AC và E, F, P thẳng hàng.c) Chứng minh tỉ số các cạnh hình chữ nhật MEAF không phụ thuộc vào vị trí của Pd) Giả sử CP vuông góc với BD. CP = 2,4cm; PD/PB = 9/16. Tính các cạnh của hình chữ nhật.