\(S=x^2-5x+8+\frac{1}{x-2}+4\left(x-2\right)\)
\(S\ge x^2-5x+8+2\sqrt{\frac{4\left(x-2\right)}{x-2}}=x^2-5x+12\)
\(S\ge\left(x-\frac{5}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
\(S_{min}=\frac{23}{4}\) khi \(\left\{{}\begin{matrix}\frac{1}{x-2}=4\left(x-2\right)\\x-\frac{5}{2}=0\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{2}\)