Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n - 1 dấu căn)
Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n-1 dấu căn)
Ai giúp mình với huhu :(
\(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+......}}}}\) ( n dấu căn)
Tính tổng sau: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
1) Giải phương trình: \(\sqrt{x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}}=a\)
Biết a là 1 hằng số .
2) Tính giá trị biểu thức : P = \(2\sqrt{3+2\sqrt{3+2\sqrt{3+.........}}}\)
Biết P có vô số dấu căn
3) Rút gọn biểu thức : D=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2+\sqrt{8-\sqrt{128}}}}}}\)
\(A=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{16}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(B=\dfrac{2\left(\dfrac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{^{^{-1}}}+3\left(\dfrac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{^{^{-1}}}}{\left(\dfrac{2+\sqrt{6}}{12}\right)^{^{^{-1}}}+\left(\dfrac{3+\sqrt{6}}{12}\right)^{^{^{-1}}}}\)
Cíu em với các pro ~
P/s: Câu B em làm đc r mà k biết kết quả đúng k nữa nên up lên hỏi luôn :)))
chứng minh
\(\sqrt{\sqrt{ }}\)2+1 -\(\sqrt{\sqrt{ }}\)2-1=\(\sqrt{ }\)2(\(\sqrt{ }\)2-1)
giúp mình với
ở cái chỗ sau dấu bằng là có một cái căn lớn bao hàm 2 nhân với căn 2 -1 nha đừng nhầm lẫn nha
thanks
A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
C/m A<\(\dfrac{1}{4}\) biết tử có 2010 dấu căn mẫu có 2009
CMR n\(\in\)N, n>3
a,\(\frac{1}{2\sqrt{1} }+\frac{1}{3\sqrt{2} } +\frac{1}{4\sqrt{3} }+...+\frac{1}{(n+1)\sqrt{n} }<2 \)
b,S=\(\frac{1}{3(1+\sqrt{2}) }+\frac{1}{5(\sqrt{2}+\sqrt{3} }+...+\frac{1}{(2n+1)(\sqrt{n}+\sqrt{n+1}) } \)