1)
\(A=\sqrt{x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}}=\sqrt{x+\sqrt{x+\dfrac{1}{4}+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}}}=\sqrt{x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}}=\sqrt{x+\left|\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right|}\)\(A=\sqrt{x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}}=\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=\left|\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right|\)
\(A=\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\)
\(A=a\Leftrightarrow\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\x\ge\dfrac{-1}{4}\\\sqrt{x+\dfrac{1}{4}}=a-\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\x\ge\dfrac{-1}{4}\\x=a^2-a\end{matrix}\right.\)
kết luận:
a <1/2 pt vô nghiệm
a>=1/2 có nghiệm duy nhất x =a^2 -a