Cho PT x2 - 2mx + 2m - 1 = 0
Đặt A = 2(x12 + x22) - 5x1x2
a) Chứng minh rằng A = 8m2 - 18m + 9
b) Tìm m để đạt GTNN
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
cho pt : x^2 - (2m+1)x + 2m - 4 = 0
tìm m để A = x1^2 + x2^2 - 4x1x2 + 4 đạt gtnn
Cho PT x^2 - 2mx + 2m - 1 = 0
Tìm m để A = 2.(x12 + x22) - 5x1x2 đạt GTNN
x^2-2mx+1+m^2-m=0
a,giải phương trình khi m=1
b;tìm m để pt có 2 nghiệm
c,tìm m để a=x1.x2-x1-x2 có gtnn
cho pt : x2 - 2(m+1)x + m2 - 4m + 5 = 0
a. Xác định m để pt có 2 nghiệm x1,x2
b. Tìm m để x12-x12=12
Gấp ạ
cho pt : \(x^4-2mx^2+5m-4\),tìm m để pt có 4 nghiệm,thõa mãn x1<x2<x3<x4 và T=\(2\left(X1^4+X2^4\right)-6X1X2X3X4\) đạt gtnn
x^2 - 2mx + 2m - 1 = 0
giải pt trong TH tổng bình phương các nghiệm đạt GTNN
a) Cho pt x2-2mx+x2-2m+4=0 (1). Tìm điều kiện của m để pt (1) có 2 nghiệm không âm X1,X2 sao cho biểu thức P=\(\sqrt{X1}+\sqrt{X2}\) đạt giá trị nhỏ nhất
b) cho parabol (P):y=x2 và đường thẳng (d):y=2(m+1)x-m2. tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A=(x1+y1) và B(x2,y2) thỏa mãn (x1-m)2+x2=3m