Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Cho phương trình: 2x3+3x2-mx+m-5=0
Tìm m để phương trình có:
a)Đúng 1 nghiệm
b)3 nghiệm phân biệt >0
c)3 nghiệm phân biệt thoả mãn:x13+x22+x32≤20
d) 3 nghiệm phân biệt <2.
Giúp nhanh cho tớ bây giờ với ạ.Cảm ơn rất nhiều ạ!!!
Tìm m để phương trình
mx2+(2m-1)x+m-2=0 có 2 nghiệm phân biệt đều âm
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
xác định m để phương trình x^3-(2m+1)x^2+(m^2+m+1)x-m^2+m-1=0 có ba nghiệm dương phân biệt
Cho phương trình \(x^4-2x^2+m-1=0\) tìm m để phương trình có bốn nghiệm phân biệt cách đều nhau